Exposure assessment / Software tool

Ghent, October 3, 2013

Matthias Van Den Bossche – Matthias.vandenbossche@intec.ugent.be
Leen Verloock – Leen.Verloock@intec.ugent.be

Overview

- Context
- Classification of RF sources
- Assessment of the exposure levels around different sources
- Definition of safety rules
 - e.g. safety distances / desactivation during maintenance
- Implementation of software tool:
 - Assess the exposure / risks around sources
Context: electromagnetic sources

- Electric equipment generates electromagnetic waves
 - Equipment for wireless communication
 - BUT also other sources generate RF radiation

Overview

- Context
- Classification of RF sources
- Assessment of the exposure levels around different sources
- Definition of safety rules
 - e.g. safety distances / desactivation during maintenance
- Implementation of software tool:
 - Assess the exposure / risks around sources
Working environments / EM sources can be divided into 3 categories (based on a study of Bolte and Pruppers)

- **Category 1**
 - Under normal conditions the action values will not be exceeded

- **Category 2**
 - Action values can be exceeded but the exposure limit values will not be exceeded under normal conditions

- **Category 3**
 - Exposure limit values can be exceeded

Based on the application

- Quick overview based on the sector
 - Broadcasting sector (radio and television)
 - Telecommunications sector (base stations, WiFi, ...)
 - Aviation (surveillance, ...)
 - Medical sector (MRI, ...)
 - ...
Overview

- Context
- Classification of RF sources
- Assessment of the exposure levels around different sources
- Definition of safety rules
 - e.g. safety distances / desactivation during maintenance
- Implementation of software tool:
 - Assess the exposure / risks around sources

Exposure Levels

- Exposure around electric equipment
 - Measurements
 - Number of measured / identical sources is limited
 - Time consuming
 - Different measurement protocol and equipment depending on the technology, frequency, ...
 - Simulations and literature
 - International papers and studies
 - Information available for general used sources: e.g. broadcasting, telecommunication, ...
Exposure levels: examples

- Example 1: General accessible places in homes, schools, offices and on public places
- Example 2: Simulations close to a multiband antenna
- Example 3: MRI scanner
- Example 4: Fluorescent lighting

Example 1: General accessible places

- Typical spectrum overview between 80 MHz and 6 GHz (Belgium)
- Dominant sources:
 - Internal sources: WiFi, DECT
 - External sources: FM, TV, GSM900, GSM1800, UMTS, LTE, WiMAX, ...
Example 1: field levels

<table>
<thead>
<tr>
<th>Environment</th>
<th>Broadband (713 measurements)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
</tr>
<tr>
<td>Schools</td>
<td>0.34</td>
</tr>
<tr>
<td>Houses</td>
<td>0.29</td>
</tr>
<tr>
<td>Public places</td>
<td>0.45</td>
</tr>
<tr>
<td>Offices</td>
<td>0.50</td>
</tr>
<tr>
<td>Summary</td>
<td>0.41</td>
</tr>
</tbody>
</table>

- Maximum electric field value is 3.50 V/m
- Maximum values in offices, lowest values in houses

Exposure levels: examples

- **Example 1**: General accessible places in homes, schools, offices and on public places
- **Example 2**: Simulations close to a multiband antenna
- **Example 3**: MRI scanner
- **Example 4**: Fluorescent lighting
Example 2: Multiband telecom antenna

Compliance distances based on E_{rms}

- Similar results in front of the antennas
 - Averaging over box smooths out differences
- At the back of the antennas large differences can occur
- Compliance distances are highest in front of the antenna
 - Direction of antenna’s main lobe

Exposure levels: examples

- Example 1: General accessible places in homes, schools, offices and on public places
- Example 2: Simulations close to a multiband antenna
- Example 3: MRI scanner
- Example 4: Fluorescent lighting
Example 3: MRI scanner

Results of measurements in technical room and MRI control room:

- **Own measurements**
 - No excessive magnetic field values measured.
 - Electric field main contribution of 50Hz mains and 48KHz fluorescent lighting

Results of measurements in MRI operation room:

- Paper: experimental investigation on workers’ exposure to EM fields.... Giovanni Betta (2011)
- **Paper: field measurements of a 1.5T clinical MR scanner**...
 S F Riches (2006)
 - Greatly depending on scanner
 - Magnetic and electric fields only exceeds the values of 2004/40/EC in close proximity of het scanner. Can not Exceed 2013/35/EU as its excluded in the directive
Exposure levels: examples

- Example 1: General accessible places in homes, schools, offices and on public places
- Example 2: Simulations close to a multiband antenna
- Example 3: MRI scanner
- Example 4: Fluorescent lighting

Diverse spectral components

Example 4: Fluorescent lighting

- Diverse spectral components

500Hz spa

100KHz span / 5cm from source

Field [V/m]

Frequency [Hz]
Overview

- Context
- Classification of RF sources
- Assessment of the exposure levels around different sources
- Definition of safety rules
 - e.g. safety distances / desactivation during maintenance
- Implementation of software tool:
 - Assess the exposure / risks around sources

Example 4: Fluorescent lighting
Example 4: Fluorescent lighting

Overview

- Context
- Classification of RF sources
- Assessment of the exposure levels around different sources
- Definition of safety rules
 - e.g. safety distances / desactivation during maintenance
- Implementation of software tool:
 - Assess the exposure / risks around sources
Electric / magnetic field values as function of distance for each source

- Comparison with different laws
 - EU Directive
 - ICNIRP occupational
 - ICNIRP general public
 - Law Flanders, Brussels Capital Region, Walloon

⇒ DETERMINATION of SAFETY DISTANCES
⇒ SUGGESTION of ACTIONS to decrease exposure
Software tool: general

- Electric field values as function of distance for each source
 - REMARKS
 - Only evaluation of action values (electric or magnetic fields)
 - Restricted number of measurements / field values
 - Exact specifications of sources are not always available
 ⇒ Worst-case data will be presented
 ⇒ overestimation is possible
 ⇒ Prevention advisers have an idea about the exposure levels
 ⇒ To know in-situ exposure around specific source: PERFORM MEASUREMENT

Software tool: parts

- DATABASE
 - Field values as function of distance for each source
 - Front/back measurements
 - Left/right measurements
 - Specifications of the source
 - Frequency
 - Power
 - Duty cycle
 - ...
Software tool: parts

Comparison with guidelines

Scaling to power input
Software tool: parts

- **Final report**
 - Safety distances
 - Actions to take
 -

Conclusions

- Exposure
 - Suggestions for field measurements around special sources
 - e.g. measurements around wireless camera (VRT): to do
 - Are there field values available for some sources that we can use for our database?

- Software tool
 - Feedback?