

FACULTEIT INGENIEURSWETENSCHAPPEN

Exposure assessment / Software tool

Ghent, October 3, 2013

Matthias Van Den Bossche – Matthias.vandenbossche@intec.ugent.be Leen Verloock – Leen.Verloock@intec.ugent.be

Ghent University/iMinds
Department of Information Technology – Wireless & Cable

- Context
- Classification of RF sources
- Assessment of the exposure levels around different sources
- Definition of safety rules
 - e.g. safety distances / desactivation during maintenance
- Implementation of software tool:
 - Assess the exposure / risks around sources

- Electric equipment generates electromagnetic waves
 - Equipment for wireless communication

• BUT also other sources generate RF radiation

- Context
- Classification of RF sources
- Assessment of the exposure levels around different sources
- Definition of safety rules
 - e.g. safety distances / desactivation during maintenance
- Implementation of software tool:
 - Assess the exposure / risks around sources

- Working environments / EM sources can be divided into 3 categories (based on a study of Bolte and Pruppers)
 - Category 1
 - Under normal conditions the action values will not be exceeded
 - Category 2
 - · Action values can be exceeded but the exposure limit values will not be exceeded under normal conditions
 - Category 3
 - · Exposure limit values can be exceeded

Category 3	——Exposure limit value		
Category 2	—— Action value		
Category 1	Action value		

Classification based on application

■ Based on the application

- Quick overview based on the sector
 - · Broadcasting sector (radio and television)
 - Telecommunications sector (base stations, WiFi, ...)
 - Aviation (surveillance, ...)
 - Medical sector (MRI,...)

•	***
_:	.4→ Telecommunications-sector¶

Category¤	Source- available	Source¤	Typical-frequency¤	Other general specifications	Remarks (e.g. actual specifications)
Personal·handheld·GSM·devices¤	a	Mobile phones: GSM900.	900°MHz·/·1800°MHz·/· 2100°MHz·/·2400°MHz¤	Powers of 2°W for GSM900 an	п
		GSM1800, UMTS, LTE¤	2100 WH127 2400 WH12	1°W· for GSM1800¤	
Base-stations¤	Πα	GSM900 base station¤		α	n
	Πα	GSM1800 base station¤		α	n
	□a	UMTS base station¤	1920·MHz·-·2170°MHz¤	α	¤
	Πα	LTE-base-station¤	2400°MHz - 2483.5°MHz /-1800°MHz-band¤	α	n
Cordless phone¤	□a	Cordless phones + cordless base stations¤		Powers of 250°mW¤	IX.
WiFi¤	Па	WiFi access- pointsa		Powers of 100°mW¤	n
	Πα	WiFi access-	5.150°GHz5.825°GHz-/¤	Powers of 200°mW¤	n

- Context
- Classification of RF sources
- Assessment of the exposure levels around different sources
- Definition of safety rules
 - e.g. safety distances / desactivation during maintenance
- **■** Implementation of software tool:
 - Assess the exposure / risks around sources

■ Exposure around electric equipment

- Measurements
 - · Number of measured / identical sources is limited
 - Time consuming
 - Different measurement protocol and equipment depending on the technology, frequency, ...
- Simulations and literature
 - International papers and studies
 - Information available for general used sources: e.g. broadcasting, telecommunication, ...

Vireless Safety for Employees
INTERREG IV

Exposure levels: examples

- Example 1: General accessible places in homes, schools, offices and on public places
- Example 2: Simulations close to a multiband antenna
- Example 3: MRI scanner
- **Example 4: Fluorescent lighting**
-

Example 1: General accessible places

- Typical spectrum overview between 80 MHz and 6 GHz (Belgium)
- Dominant sources:
 - Internal sources: WiFi, DECT
 - External sources: FM, TV, GSM900, GSM1800, UMTS, LTE, WiMAX, ...

rance • Wallonie • Vlaanderen

Example 1: field levels

Environment	Broadband (713 measurements)		
	Average	Max	
Schools	0.34	2.52	
Houses	0.29	1.00	
Public places	0.45	2.20	
Offices	0.50	3.50	
Summary	0.41	3.50	

- Maximum electric field value is 3.50 V/m
- Maximum values in offices, lowest values in houses

Exposure levels: examples

- **■** Example 1: General accessible places in homes, schools, offices and on public places
- Example 2: Simulations close to a multiband antenna
- **■** Example 3: MRI scanner
- Example 4: Fluorescent lighting
-

Compliance distances based on E_{rms}

 Similar results in front of the antennas

Averaging over box smooths out differences

- At the back of the antennas large differences can occur
- Compliance distances are highest in front of the antenna

Direction of antenna's main lobe

Exposure levels: examples

- Example 1: General accessible places in homes, schools, offices and on public places
- Example 2: Simulations close to a multiband antenna
- Example 3: MRI scanner
- Example 4: Fluorescent lighting
- **....**

Example 3: MRI scanner

Example 3: MRI scanner

- Results of measurements in technical room and MRI controlroom.
 - Own measurments
 - No excessive magnetic field values measured.
 - Electric field main contribution of 50Hz mains and 48KHz fluorecent lighting
- Results of measurements in MRI operation room:
 - paper: experimental investigation on workers' exposure to EM fields.... Giovanni Betta (2011)
 - Paper: field measurements of a 1.5T clinical MR scanner... S F Riches (2006)
 - Greatly depending on scanner
 - Magnetic and electric fields only exceeds the values of 2004/40/EC in close proximity of het scanner. Can not Exceed 2013/35/EU as its excluded in the directive

Exposure levels: examples

- Example 1: General accessible places in homes, schools, offices and on public places
- Example 2: Simulations close to a multiband antenna
- Example 3: MRI scanner
- Example 4: Fluorescent lighting
-

- Context
- Classification of RF sources
- Assessment of the exposure levels around different sources
- Definition of safety rules
 - e.g. safety distances / desactivation during maintenance
- Implementation of software tool:
 - Assess the exposure / risks around sources

Example 4: Fluorescent lighting

- Context
- Classification of RF sources
- Assessment of the exposure levels around different sources
- Definition of safety rules
 - e.g. safety distances / desactivation during maintenance
- Implementation of software tool:
 - Assess the exposure / risks around sources

■ Electric / magnetic field values as function of distance for each source

- Comparison with different laws
 - EU Directive
 - ICNIRP occupational
 - ICNIRP general public
 - · Law Flanders, Brussels Capital Region, Walloon
 - ⇒DETERMINATION of SAFETY DISTANCES
 - ⇒SUGGESTION of ACTIONS to decrease exposure

Software tool: general

■ Electric field values as function of distance for each source

- REMARKS
 - Only evaluation of action values (electric or magnetic fields)
 - Restricted number of measurements / field values
 - Exact specifications of sources are not always available
 - ⇒Worst-case data will be presented
 - ⇒overestimation is possible
 - ⇒ Prevention advisers have an idea about the exposure levels
 - ⇒To know in-situ exposure around specific source: PERFORM **MEASUREMENT**

Software tool: parts

DATABASE

- Field values as function of distance for each source
 - Front/back measurements
 - · Left/right measurements
- Specificiations of the source
 - Frequency
 - Power
 - Duty cycle
 - ٠ ...

INTERREG IV

■ Comparison with guidelines

■ Scaling to power input

■ Final report

- Safety distances
- Actions to take
-
 - http://wicaserv2.intec.ugent.be/EmTool/

Wireless Safety for Employees
INTERREG IV

■ Exposure

- Suggestions for field measurements around special sources
 e.g. measurements around wireless camera (VRT): to do
- Are there field values available for some sources that we can use for our database?

■ Software tool

• Feedback?

