

Academiejaar 2015-16

Thesispresentaties 2016-17

WAVES - Wireless

Green ICT Medische toepassingen Wireless body area networks Performantie van draadloze netwerken Blootstelling aan elektromagnetische velden Communicatie en propagatie voor draadloze netwerken

Wireless

<u>Promotors:</u> prof. Luc.Martens | prof. Wout.Joseph | prof. Emmeric.Tanghe
<u>Supervisors:</u> Margot.Deruyck | Xu.Gong | David.Plets | Amine.Samoudi | Arno.Thielens | Gunter.Vermeeren

@intec.UGent.be

Low exposure

Energy efficient

Maximum coverage

Green ICT

Proposal Master Proof

Accounting for Energy Cost when Designing Energy-Efficient Wireless Access Networks

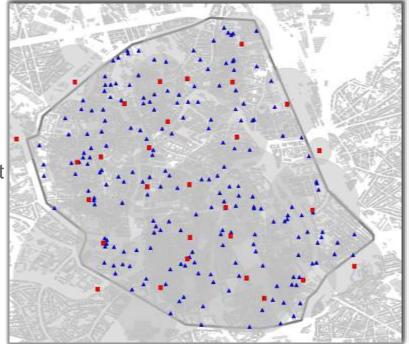
Promotor Prof Luc Martens, Prof Wout Joseph Supervisor Margot Deruyck

ELFLAND

Energy cost in network design

Context

- In literature: lot of effort to develop energy-efficient networks
- However: for companies, the energy cost is the most appropriate parameter
- How can we take into account energy cost as a parameter during the network design process?
 - And still develop an energy-efficient network?


Energy cost in network design

Aim

- Develop an algorithm for the design of an energy-efficient network by taking into account energy cost as extra parameter
- Evaluate influence on the network, (renewable) energy provisioning system, and battery system

Method

- 1. Literature study
 - Design of energy-efficient wireless access networks
 - Identify prediction models for energy cost and energy production
- 2. Implementation of an algorithm
 - In Java, tool available in research group
- 3. Evaluation/comparison of different scenarios
 - Proofing your algorithm works
 - Recommendations for practical implementation

Contact

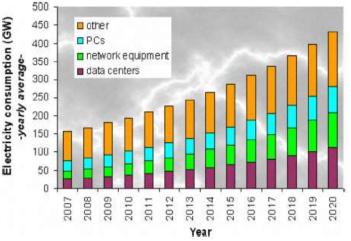
• margot.deruyck@intec.ugent.be

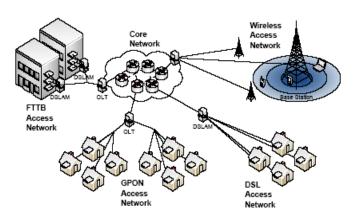
Proposal Master Proof

Designing Heterogeneous Green Wireless Access Networks

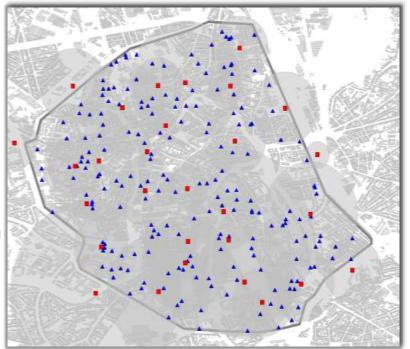
Promotor Prof Luc Martens, Prof Wout Joseph Supervisor

Margot Deruyck




Heterogeneous green networks

Context


- ICT: 4% of worldwide energy consumption
 - Expected to double in the next 10 to 15 years
- Wireless access networks are large consumers
- Important to quantify the power consumption of the different elements in the network
- Also human exposure becomes more and more important
- We developed a deployment tool for future green wireless access networks
 - Disadvantage: only one wireless technology is considered

- Support for heterogeneous networks
 - Multiple wireless technologies at the same time
- Method
 - 1. Literature study
 - Design of energy-efficient wireless access networks
 - Power consumption of the different base station types and technologies
 - Evaluation of the human exposure
 - 2. Implementation of an algorithm
 - In Java, tool available in research group
 - Design of an energy-efficient network with low human exposure by choosing the right base station type and technology at each location
 - 3. Evaluation/comparison of different scenarios
 - Proofing your algorithm works
 - Recommendations for practical implementation

Contact

margot.deruyck@intec.ugent.be

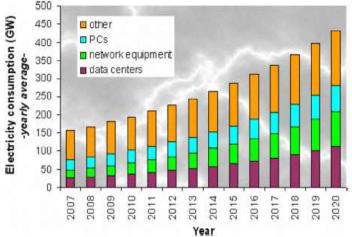
Proposal Master Proof (Industrial science: Informatics only)

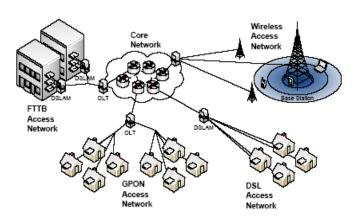
Designing and visualizing green wireless access networks based on Google Maps

Promotor

Prof Luc Martens, Prof Wout Joseph

Supervisor


Margot Deruyck

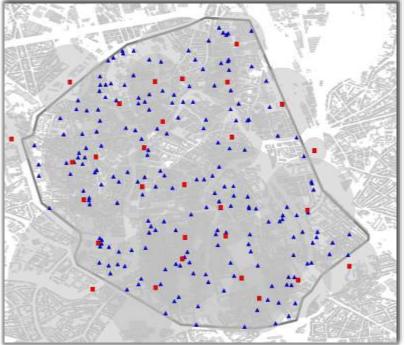


Green ICT

Context

- ICT: 4% of worldwide energy consumption
 - Expected to double in the next 10 to 15 years
- Wireless access networks are large consumers
- Important to quantify the power consumption of the different elements in the network
- Also human exposure becomes more and more important
- We developed a deployment tool for future green wireless access networks
 - Disadvantage: only compatible with shape files

Green ICT


Aim

- Supporting Google Maps as well
- Visualizing the network performance

Method

VIVERSITEI

- Based on the simulation tool (in Java) developed in our research group
- Input based on Google Maps
 - Indicating the area to cover
 - Extract all the needed information about the area
 - Provide compatibility with the tool
 - Design of an appropriate GUI
- Output: visualize the network in Google Maps
 - Visualize the performance
 - Bit rate, coverage, signal strength, heath map exposure, etc.

Contact

margot.deruyck@intec.ugent.be

FACULTY OF ENGINEERING

Master Thesis 2016 - 2017

Green Factory: Optimization of Industrial Electricity Consumption Cost by Production Scheduling

Supervisors

Prof. Wout Joseph, Prof. Luc Martens

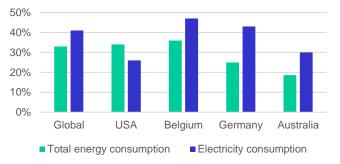
Mentors

Xu Gong, Toon De Pessemier

Contact

xu.gong@intec.ugent.be

een



Background

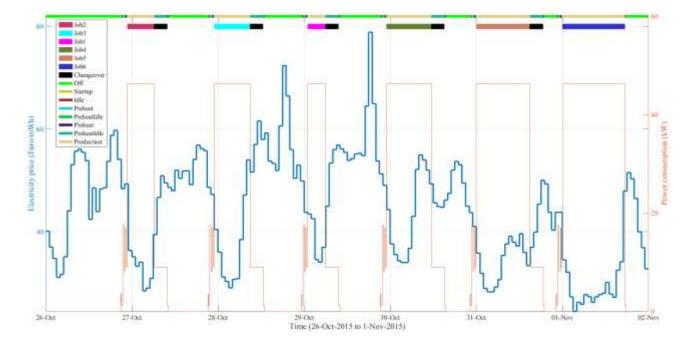
IVERSITEIT

- The global industry leads to very high energy consumption
- Expenditure on energy consumption is becoming no longer negligible for industrial enterprises
- Volatile electricity price over time
- Higher greenhouse gas (GHG) emissions during peak hours of electricity demand

Percentage of Industrial Energy Consumption

• The production activities on industrial machines/lines are usually scheduled in advance either manually or automatically, which provides high potential to control and minimize the industrial energy consumption by using computer-based intelligence

Purpose


waves

- To create advanced algorithms for automatically scheduling production activities, which take the volatile electricity price into consideration
- These algorithms are loadable into an internal memory of one or several digital computers, and executable for intelligently recommending an optimal production schedule
- Multiple optimization objectives: energy cost minimization, total weighted tardiness/earliness minimization, makespan minimization, GHG emissions minimization, etc.
- Main parts of the thesis: (1) Literature review, (2) problem formulation, (3) optimization and implementation, (4) numerical validation and analysis

Methods

waves

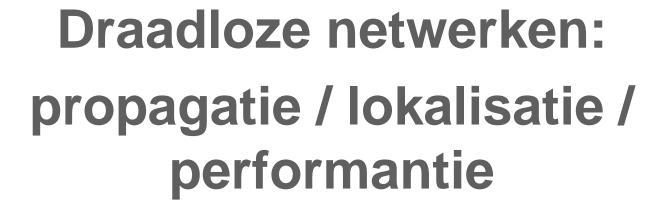
GENT

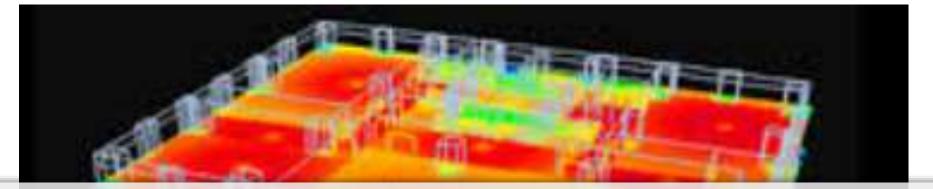
- Literature review: optimization metaheuristics, energy-concious production scheduling
- Problem formulation: mixed-integer programming (MIP), a model proposed
- Optimization and implementation: coding of the MIP model and the optimization metaheuristic, preferably in Java
- Numerical validation and analysis: various numerical experiments to test the correctness of the implementation, and further to assess the performance of the proposed energy-concious production scheduling method to reduce energy cost (and/or GHG emissions)
- Bonus: (1) performance benchmark between the proposed energy-concious production scheduling method and the ones at WAVES, (2) joint publication for conferences and/or journals

Direct user feedback for domestic energy use

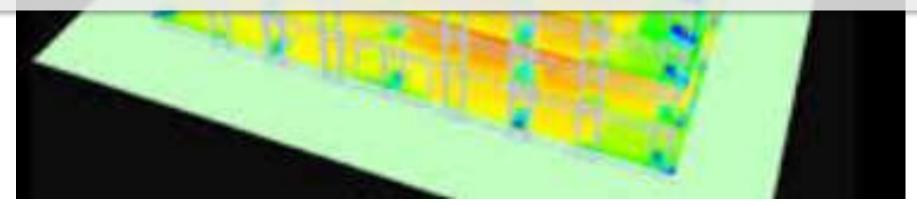
Promotors Arnold Janssens, Wout Joseph Supervisors Jelle Laverge, David Plets, Marc Delghust, Kris Vanhecke, Toon De Pessemier

Context


- Environment-friendly buildings
- More efficient use of energy
- Current energy usage in high-performance buildings turns out to be higher than design targets, due to inefficient user behaviour
- ➔Direct user feedback
 - Might reduce energy consumption with > 20%
 - Makes building occupants more aware of energy
- Implementation of user feedback platforms not straightforward


Goal

- Implement and test operational prototype of user feedback tool (heating, water, electricity)
 - Neighbourhood in Kortrijk equipped with extensive energy monitoring
- Concrete goals
 - Set up web application
 - Link monitoring data to application in realtime
 - Select and implement data reduction and normalization methods
 - Select and develop graphical representation of results
 - Test user acceptability and effectiveness of the tool

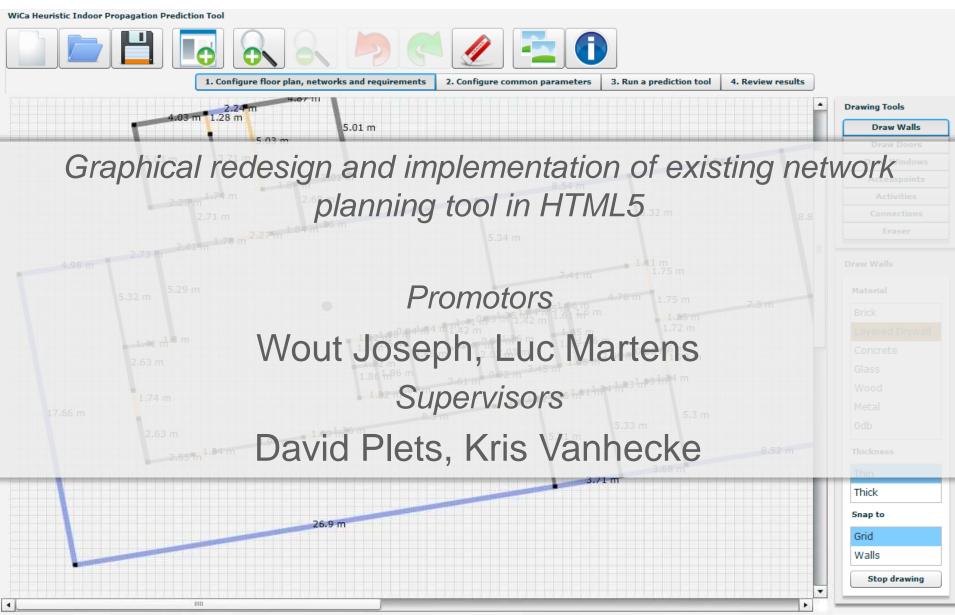


Development of a tool for 3D characterization of indoor WiFi and femtocell coverage

Promotors Wout Joseph, Luc Martens Supervisors David Plets

Context

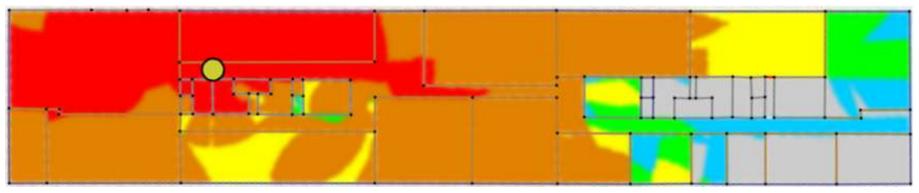
- Expansion of wireless networks, also indoor
 - Very complex environment
- Prediction tools require accurate path loss models
 - Environment (office vs. industrial)
 - 3D influences
 - Height transmitter (access point) and receiver (laptop)
 - Floor of transmitter and receiver
 - Transmission frequency (2.4 5 GHz)
 - Technology (WiFi vs. 4G femtocells)
 - Accurate determination of influences is necessary



Goal

IVERSITEI

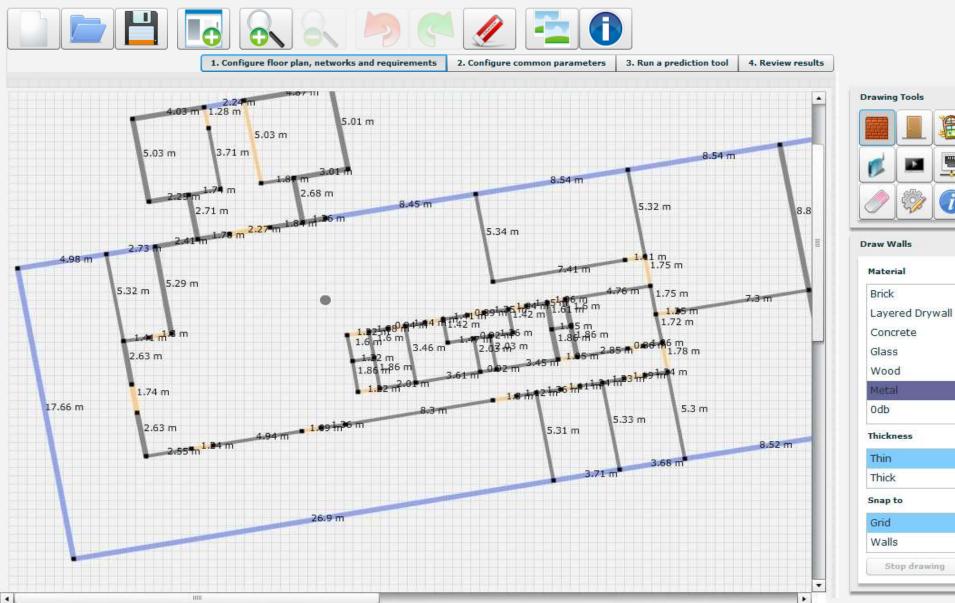
- Design of indoor 3D network planning tool by accurately characterising influencing factors on path loss
 - Execute path loss measurements to assess influence of height, frequency, environment,...
 - Analyse date and construct models
 - Incorporate models in existing tool



WHIPP network planning tool - Tutorial – David Plets Department of Information Technology – Wireless & Cable

Context

- Increased use of wireless communication in indoor environments
- Automated network planner very useful for network deployers
- Current tool in Adobe Flex 3 (Flash)



WiCa Heuristic Indoor Propagation Prediction Tool

JNIVERSITEIT

GENT

Context

- New, more flexible and standardized technologies available (HTML5)
- Flash being used less and less
- →Redesign and implementation of existing GUI functionalities (standard HTML, CSS, Javascript)
- Make tool cross-platform and cross-browser

Goal

- Graphical redesign and implementation of existing planner in HTML5
- 1. Preparatory study on HTML, CSS & Javascript libraries for rich UI development (w2ui, jQuery UI, ToolbarJS)
- 2. Study current tool architecture & functionalities
- 3. Identify possible improvements
- 4. Study requirements for user-friendly application
- 5. Redesign existing functionalities in HTML5: student is responsible for user interface with backend where algorithms are run
- 6. User-friendliness, stability, maintainability, efficiency
- 7. Testing: cross-platform, cross-browser
- 8. Comparison with original tool

Outdoor LoRa network planning and localization for IoT

Promotors David Plets, Wout Joseph Supervisors

Luc Martens, Margot Deruyck, Jens Trogh

Outdoor LoRa network planning and localization for IoT

Context

IVERSITEIT

- LoRa is a new technology designed to support Internetof-Things (IoT) applications
 - Low data rates, long range, high sensitivity
 - Smart cities
 - Localization (trash cans, people, boats,...)
- Accurate localization requires
 - Characterization of wireless channel
 - Design of intelligent algorithms

Outdoor LoRa network planning and localization

Goal

- Develop and validate wireless channel models for LoRa
- 1. LoRa literature study
- 2. Outdoor channel models

for IoT

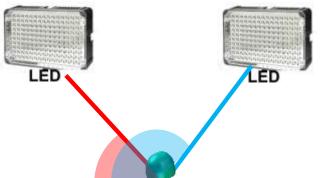
- 3. Set of measurements in Ghent \rightarrow models
- 4. Perform LoRa network planning
 - Three LoRa base stations within range for triangulation
- 5. Develop localization algorithms
 - Based on the developed path loss models
 - Add intelligence (maximum node speed, possible trajectory,...)
- 6. Final testing phase of localisation algorithms

Wireless localization with a Visible Light Positioning (VLP) algorithm

Promotors David Plets, Nobby Stevens Supervisors Luc Martens, Jens Trogh, Emmeric Tanghe, Wout Joseph

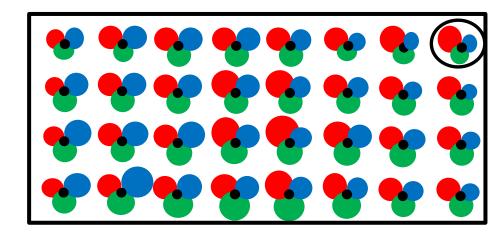
Context

VERSIT


- Huge interest of industrial players in accurate localization
- Current systems very expensive
 - →Location tracking based on visible light very promising

Modulated LED signals from different sources

Receiver module with photo diode


- Develop VLP-based location tracking algorithm
- 1. Angle-of-Arrival-based

Thesis in cooperation with KULeuven-DraMCo

- 2. RSSI-based
 - Compare measured and predicted light intensities

Adaptieve locatiebepaling in een MIMO-UWB draadloos netwerk

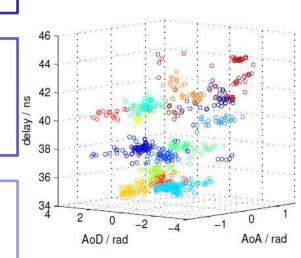
 Ontwerpen van een algoritme die aan de hand van elektromagnetische propagatiepaden de ongekende positie schat van een mobiele gebruiker

Literatuurstudie Schatten propagatiepaden Ultra-Wideband technologie Tx (x, y, z) Algoritmen voor locatiebepaling Adaptieve locatiebepaling Obstructie van directe pad tussen Tx en Rx • Afwegen verschillende benaderingen (bv. RSSI) • Ontwerp hybride-strategie die algoritmen combineert Rx3 (x3, V3, 23) O(0.0.0) Analyse Rx1(x1,v1,z1) • Uitvoeren testmetingen en bepaling evaluatie-metriek RX2(x2,F2,Z2) Parameter sensitiviteits-analyse (AoA, delay, vermogen) Betrouwbaarheid locatiebepaling en/of frequentie-gedrag

Clustering van Ultra-Wideband multipad-propagatie

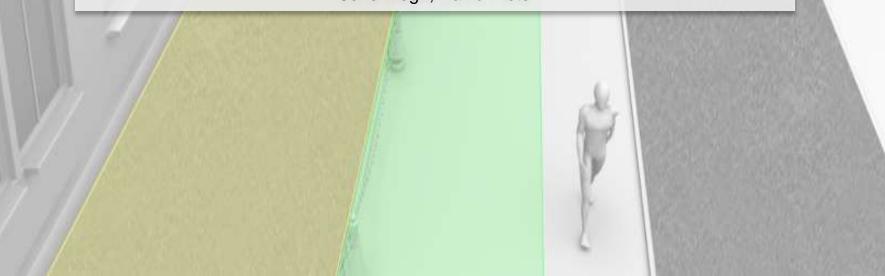
• Ontwerpen van een algoritme die propagatiepaden groepeert op basis van gelijkaardige parameters zoals vermogen en aankomsthoek i.f.v. frequentie

Literatuurstudie


- Schatten propagatiepaden
- Ultra-Wideband en frequentie-afhankelijkheid
- Algoritmen voor clustering van propagatiepaden

Ontwikkeling clusteringsalgoritme

- Clustering-metriek (AoA, AoD, delay, vermogen)
- Clustering-strategie (apart, gezamenlijk, hybride)
- Combinatie met frequentie-afhankelijkheid van UWB


Analyse

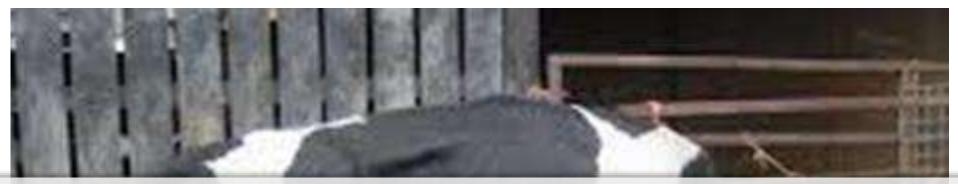
- Uitvoeren testmetingen en bepaling evaluatie-metriek
- Feedback naar algoritme en/of validering met ray-tracing
- Analyse i.f.v. verschillende domeinen (ruimtelijk, frequentie)

Design and Implementation of a Device-Free Localization System

Promotors Wout Joseph, Luc Martens Supervisors Jens Trogh, David Plets

Context

- Localization and tracking systems
 - Active area of research
 - Applications in many sectors
 - Tracking patients, visitors, equipment, goods,...
- Device-free localization
 - Passive localization
 - Track an object that is not actively participating
 - Useful for e.g.: intrusion detection, low cost surveillance,...


Goals

- Development of a device-free localization system
 - Locate one or more persons in a building
 - Track a person as he or she moves through the building
- Outline
 - Literature study
 - Design of a passive localization system
 - Implementation and verification
 - Validation on wireless testbed

Wireless body area networks / Wireless sensor networks

IoT and cows: lameness detection algorithms for animals

Promotors David Plets, Bart Sonck Supervisors

Luc Martens, Said Benaissa, Wout Joseph, Frank Tuyttens, Matthias Van den Bossche

IoT and cows: lameness detection algorithms for animals

Context

VERSITE

- Anomalies in cow health cause significant loss for the farmer and suffering for the animal
 - Dairy cows with lameness produce much less milk
- Use on-cow sensors for lameness detection
 - Longer lying times
 - Different walking pattern

IoT and cows: lameness detection algorithms for animals

Goal

- Design of algorithms that derive degree of lameness from on-cow sensors
- 1. Literature study on lameness and current detection methods
- 2. Conduct training experiments
 - 1. Equip cows with sensors (accelerometer, barometer, compass,...)
 - 2. Track movement of animal with sensors and camera system
 - 3. Algorithms to detect lying times, degree of movement, (maximal) speed,...
- 3. Validation experiments on a new set of animals

IoT and cows: lameness detection algorithms for

Goal

4. Test algorithms on lame animals

animals

- 1. Characterize differences between healthy and lame cows
- 2. Develop lameness detection algorithms
- 3. Determine the sensors that have the best predictive performance
- 5. Analysis of sensor sampling rate vs. energy consumption

Thesis in cooperation with ILVO (Instituut voor Landbouw- en Visserijonderzoek)

Thesisvoorstel

Wireless monitoring of health and performance parameters of race horses

Promotoren

prof. Wout Joseph en prof. Eli De Poorter

Begeleider

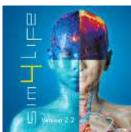
Günter Vermeeren

Scaling up of farms = TREND in agriculture

- Need to monitor livestock to quickly diagnose diseases
- Wireless Sensor Network (WSN) deployed on animal body
 - Layout

IVERSITEIT

- Sensors placed **on** and **in** the body
- Data collector: link to the backend
- Monitoring of vital signs:
 - Heart beat
 - Body temperature
 - Behavior or Activity
- Key aspect in the design = energy efficiency
 - Knowledge of path loss (PL) ?



Investigation of on-body, in-to-out and off-body PL in a wireless sensor network for equine monitoring

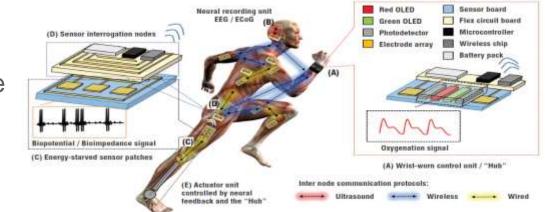
- Literature review on candidate WSN technologies, sensor antennas, LoRa technology, etc.
- Numerical study of PL using state-of-the-art commercial FDTD simulation tool Sim4Life (ZurichMedTech, Switzerland)
 - Design of homogeneous model of a horse
 - Modelling of selected antennas
 - PL investigation for selected WSN technologies
- Measurements and tests
 - with LoRa sensors and sensor technologies on phantom models
 - Optionally, measurements on real horses
- Comparison and ranking of different WSN technologies for energy efficieny

gunter.vermeeren@intec.ugent.be

Thesisvoorstel Characterization of On-Body Radio Propagation in the 60-GHz Band

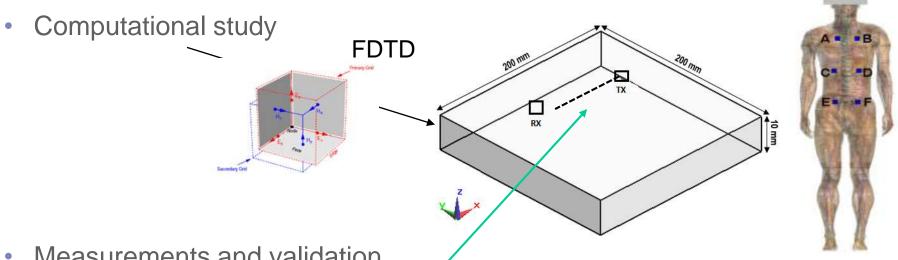
Promoteren Prof. Wout Joseph, Prof. Luc Martens

> Begeleider Reza Aminzadeh



- 60-GHz wireless communication systems
- Body area networks

 Human body is <u>lossy</u> and is <u>exposed</u> to this radiation


- Efficient design of wearable technologies
- Study on-body propagation in the 60-GHz band

- Study of 60 GHz propagation along (on the surface of) the human body
- Goal:
 - Understanding the effect of body morphology on 60 GHz radio propagation

- Measurements and validation
 - Using at least two antennas as the
 - transmitter and the receiver on body (different height, distance)
 - Measurement of channel parameters (for example: path gain)

Medische toepassingen

Master Thesis 2016 - 2017

Stimulation of neural population for auricular vagus nerve stimulation

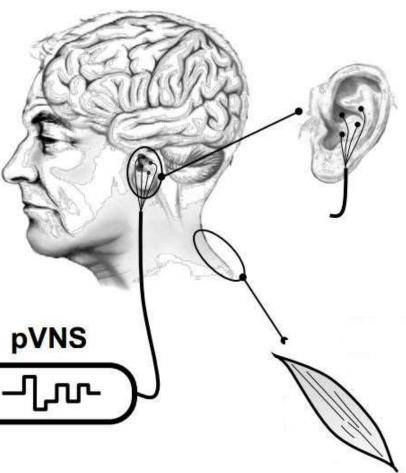
Supervisors

Prof. Wout Joseph

Mentors

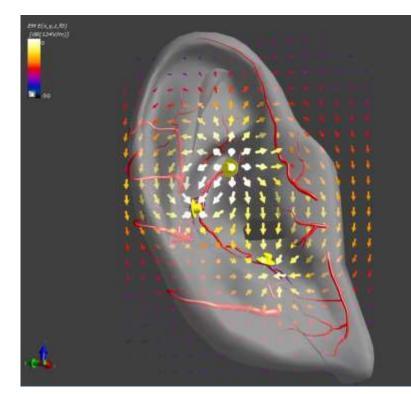
Amine Samoudi, Emmeric Tanghe

Contact


amine.samoudi@intec.ugent.be

 Stimulation of the cervical vagus nerve by implanted devices: treatment for epilepsy, major depression,...

 Auricular Branch of the Vagus Nerve Stimulation => minimally-invasive way of neuromodulative intervention


Stimulation of neural population for auricular vagus nerve stimulation

Purpose

1. Model and simulate the neural population in the ear based on single nerve positions

- 2. Simulate the neural population stimulation with a map of percentage of stimulated neurons.
- 3. Optimize the stimulation pattern (position of the electrodes, electrode depth inside the ear, pulse design) to perform maximum percentage of targeted stimulated nerves.

Simulation platform

3D Electromagnetic solvers

Envision reality in your brain. Verify and optimize it in ours.

sım4Lıpe

Experience the revolutionary new multiphysics simulation software platform for constructing and simulating complex, predictive computational models of real-world phenomena for life sciences and medtech applications.

Low frequency solver

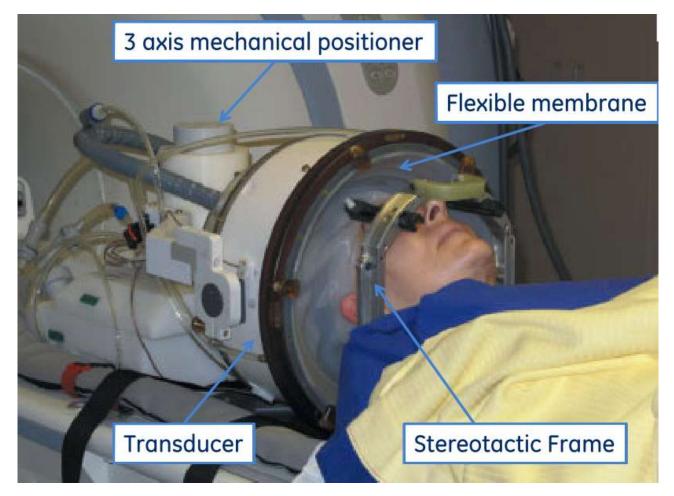
Neuronal solver

ABVN Stimulation

VIVERSITEIT

amine.samoudi@intec.ugent.be

Numerical modelling of ultrasound propagation in the human brain Promotors Prof Timothy Van Renterghem Prof Emmeric Tanghe

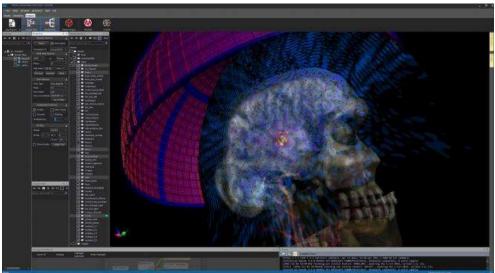


Low-intensity focused ultrasound (LiFUS)

Context

IVERSITE

neuromodulation for treatment of neurological disorders


1) FDTD simulations of US propagation in the brain

Methodology

- in Sim4Life software
- 2) Simulations of the neuron electrodynamics during US stimulation
 - with in-house Matlab code (modifications needed)

3) Design of US transducer array and stimulation signal

the goal is to target the deep brain

Blootstelling aan elektromagnetische velden

Master Thesis 2016 - 2017

Dosimetry of transcranial magnetic stimulation devices for patients and clinical staffs

Supervisors

Prof. Wout Joseph, Prof. Luc Martens

Mentors

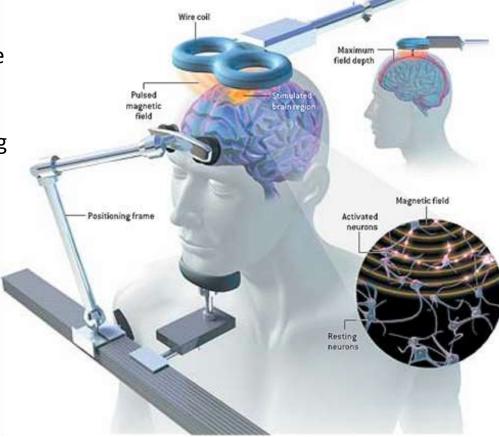
Amine Samoudi, Günter Vermeeren

Contact

amine.samoudi@intec.ugent.be

Dosimetry of transcranial magnetic stimulation devices for patients and clinical staffs

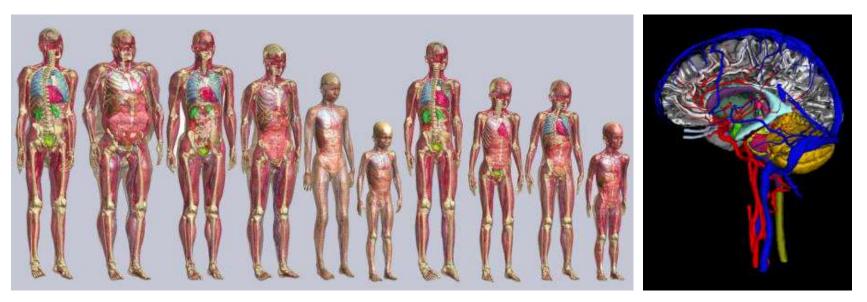
Transcranial magnetic stimulation (TMS): technique for noninvasive stimulation of the human brain


VERSITEIT

GENT

Exposure of the human body to time-varying magnetic fields

Induction of internal body currents


Health problems

Purpose

- 1. Design and simulate TMS coil
- 2. Calculate the induced electro-magnetic field in head model functionalized for EM-Neuron simulations
- 3. Determine exposure of patients and workers exposed to TMS devices

Dosimetry of transcranial magnetic stimulation devices for patients and clinical staffs

Method

3D Electromagnetic and Neuronal Solvers

Envision reality in your brain. Verify and optimize it in ours.

sım<mark>u</mark>lıpe

Experience the revolutionary new multiphysics simulation software platform for constructing and simulating complex, predictive computational models of real-world phenomenafor life sciences and medtech applications.

Master thesis on MR dosimetry of TMS

WAYES

amine.samoudi@intec.ugent.be

Thesisvoorstel Design of a Radio Frequency Personal Exposimeter for FM Band

Promoteren Prof. Wout Joseph, Prof. Luc Martens

Begeleiders Reza Aminzadeh, Arno Thielens

Probleemstelling

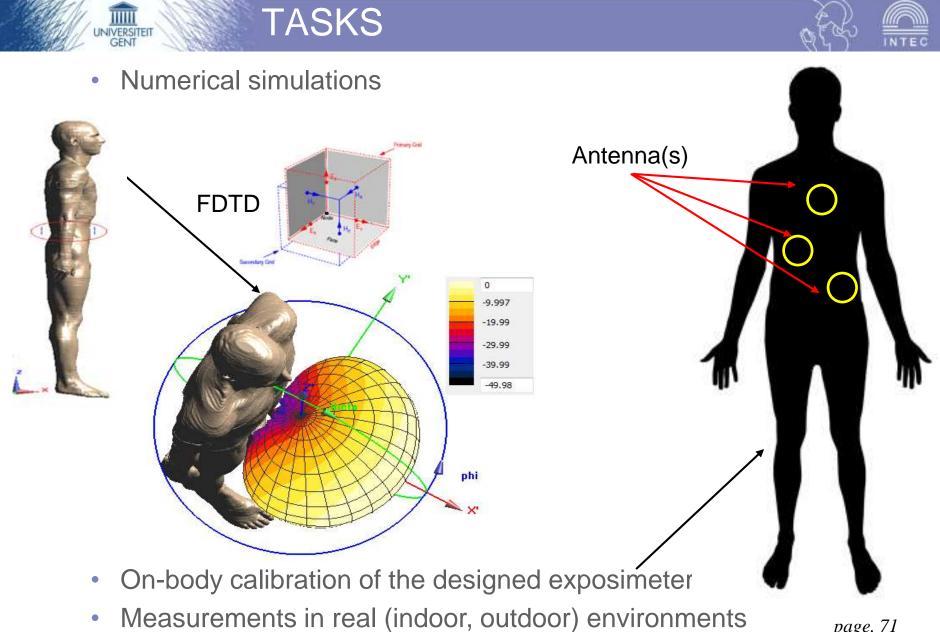
easureme

Personal exposing centainty

IVERSITE

 People are exposed to radio-frequency electromagnetic fields (FM radio)

Underestimation of the actual exposure • Location of PEMs on body — measurement variation


 PEMs are calibrated in free space while they are used on body page. 69

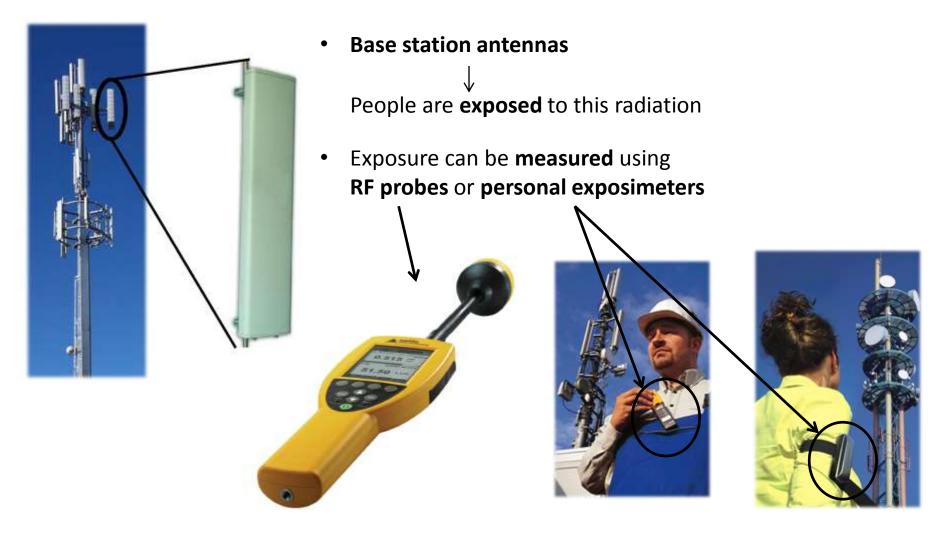
• Design a personal exposimeter for FM band (87.5-108 MHz)

- Investigation whether the designed exposimeter can estimate the actual exposure in FM-band
- Application in real indoor environment

page. 71

Thesisvoorstel

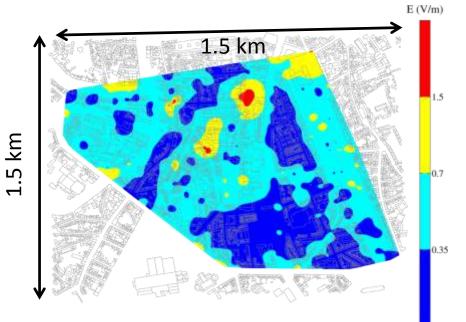
Spatial mapping of Radio-Frequency Exposure Caused by Base Station Antennas


- Promotoren
- Prof Wout Joseph
- **Begeleiders**
- Arno Thielens, Margot Deruyck, Sam Aerts

Probleemstelling

VERSIT

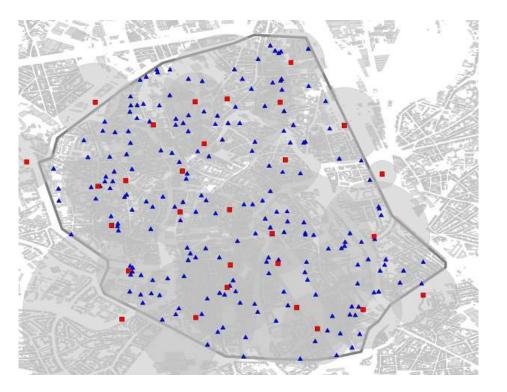
Probleemstelling

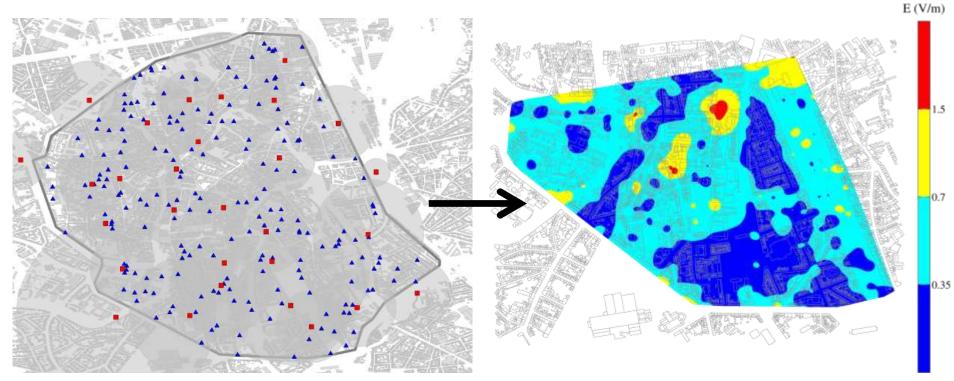

VERSIT

- Measuring a large area is:
 - Time-consuming
 - Expensive

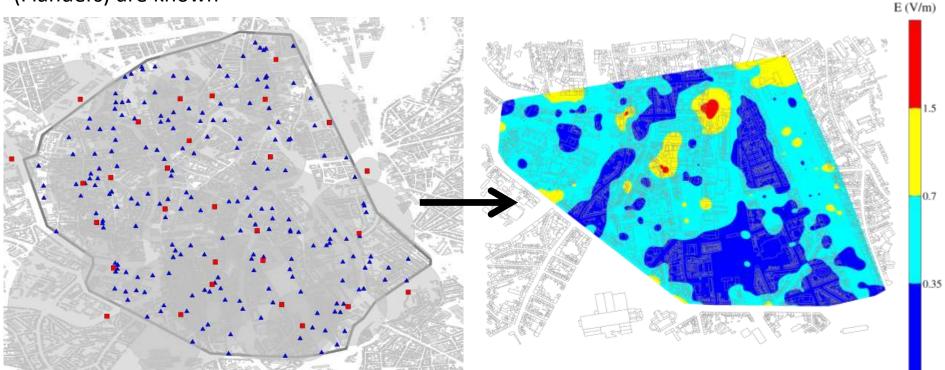
- Base station antennas emit Radio-Frequency (RF) radiation

 People are exposed to this radiation
- Exposure can be measured using
 RF probes or personal exposimeters


These measurements can be used to make **exposure maps**


If we know the **location** of all base station antennas?

If we know the **location** of all base station antennas?


Could we then **simulate** this exposure?

Locations of base station antennas in Ghent (Flanders) are known

VERSI

Tasks

- 1. Implement algorithm of **propagation** of RF radiation in tool
- 2. Translate the result of this propagation into **personal exposure**
- 3. Validate the results (the exposure map) with measurements (the alternative)

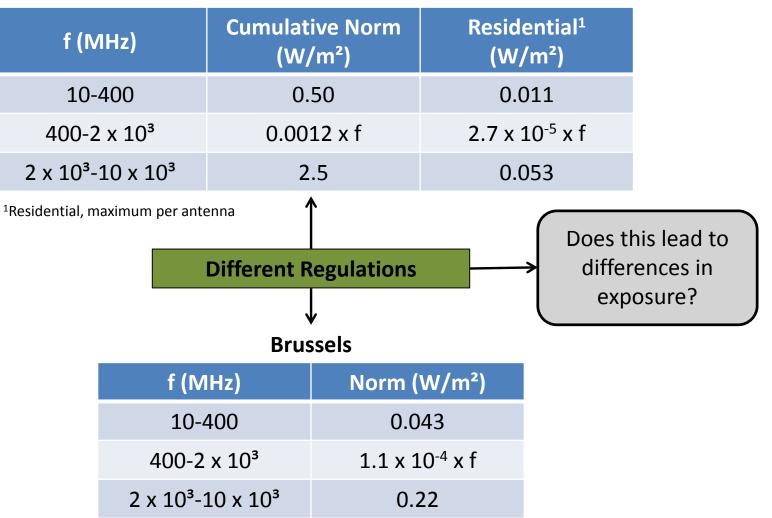
Thesisvoorstel

Characterization of Radio-Frequency Exposure Levels in Different Urban Environments

Bastogne

LUXEMBOURG

Neufchäteau


Promotoren Prof Luc Martens, Prof Wout Joseph

- Begeleider
- Arno Thielens

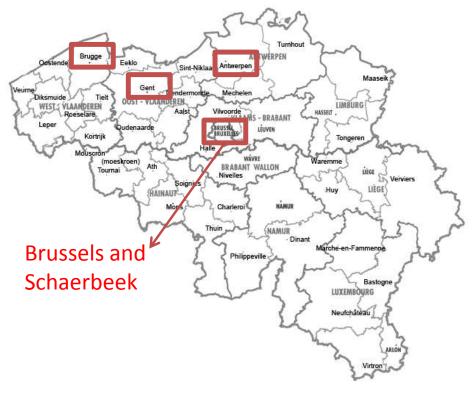
Flanders

Measurements of personal exposure using a new measurement device

Method

JNIVERSITEIT GENT

© Ralph Lauren



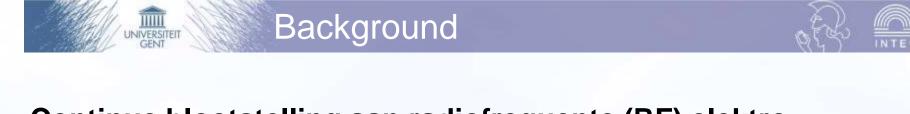
Measurements in different microenvironments

 Method

Type of micro-	urban*
environment	
outdoor areas	
downtown area	2
business area	2
shopping area	2
residential area	2
public places	
railway station	2
bus station	2
university	2
transportation mode	
train	2
bus	2
metro/tram	2
car	2
Total N	22

* Antwerp, Ghent, Bruges, Brussels, and Schaerbeek

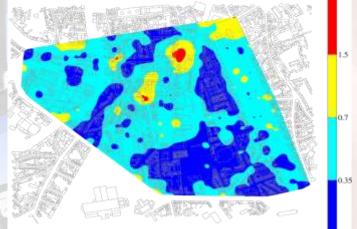
Comparison of five cities in Flanders and Brussels



Spatiotemporal modelling of environmental exposure to radiofrequency electromagnetic fields

Promotoren: prof. Luc Martens, prof. Wout Joseph Begeleider: Sam Aerts (*sam.aerts*@*intec.ugent.be*)

Continue blootstelling aan radiofrequente (RF) elektromagnetische straling (GSM, UMTS, LTE, Wi-Fi, FM, ...)


? Waar hoeveel ?

Nood aan informatie

In kaart brengen van elektromagnetische straling

Moeilijk in real-life: (bewegende) obstakels, interferentie, ...

Simulaties, maar veel nauwkeurige info nodig
Interpolatie, maar veel tijdrovende metingen nodig

E (V/m)

Land-use regression (LUR) = techniek die *in-situ* metingen combineert met *predictor variabelen* uit **geografische informatie** om tot een blootstellingsmodel te komen.

$$B(x, y, t) = a * m(x, y, t) + b * p(x, y) + c$$

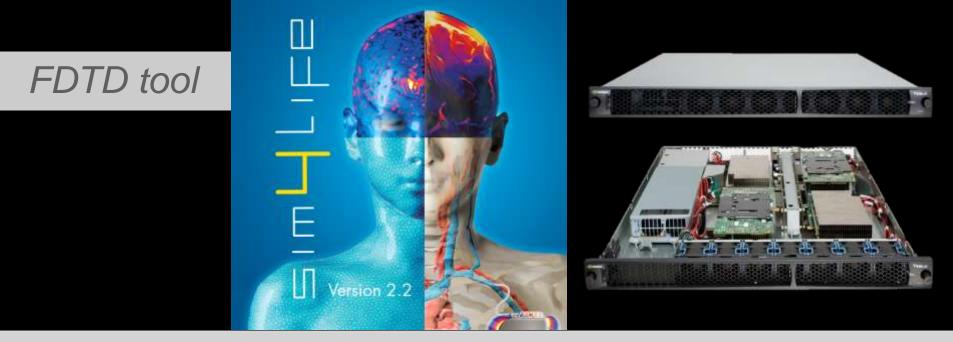
met B(x,y,t) = blootstelling op plaats (x,y) en tijdstip t, m(x,y,t) = meting op plaats (x,y) op tijdstip t, p(x,y) de predictor-waarde op plaats (x,y), en a, b, en c constanten.

Wordt veel gebruikt in environmental exposure modeling, maar nog nooit voor blootstelling aan RF-EMF.

Spatiotemporal modelling of environmental exposure to radiofrequency electromagnetic fields Department of Information Technology – WAVES

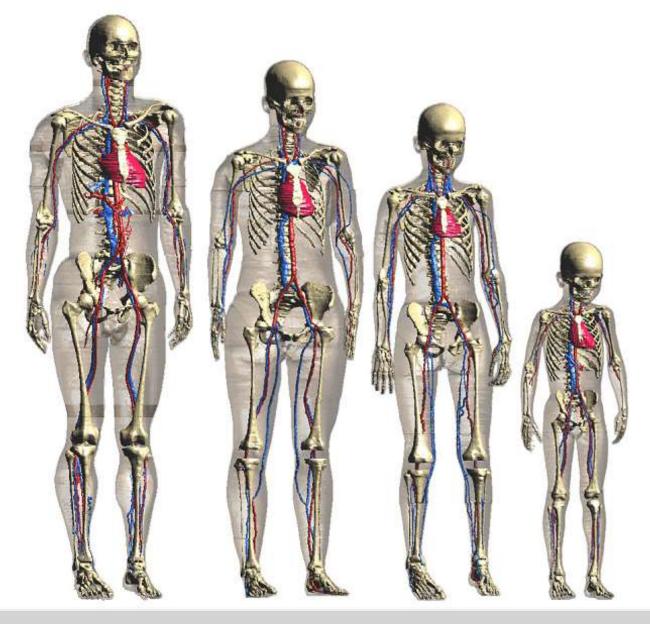
- Opzoeken van de locatie & properties van basisstations in Gent (http://www.sites.bipt.be/) en opslaan in een Geographical Information System (GIS). (Al deels gedaan in vorig onderzoek.)
- Meten van de radiofrequente straling in een stratengrid in Gent. De metingen zullen enkele malen herhaald worden op verschillende tijdstippen om temporele trends in de blootstelling vast te stellen.
- Verwerken van de data met een statistical software package (R of SPSS) in een land use regression model van de RF blootstelling.
- 4. Valideren van het finale model met onafhankelijke metingen en data, en vergelijken van de resultaten met bestaande technieken.

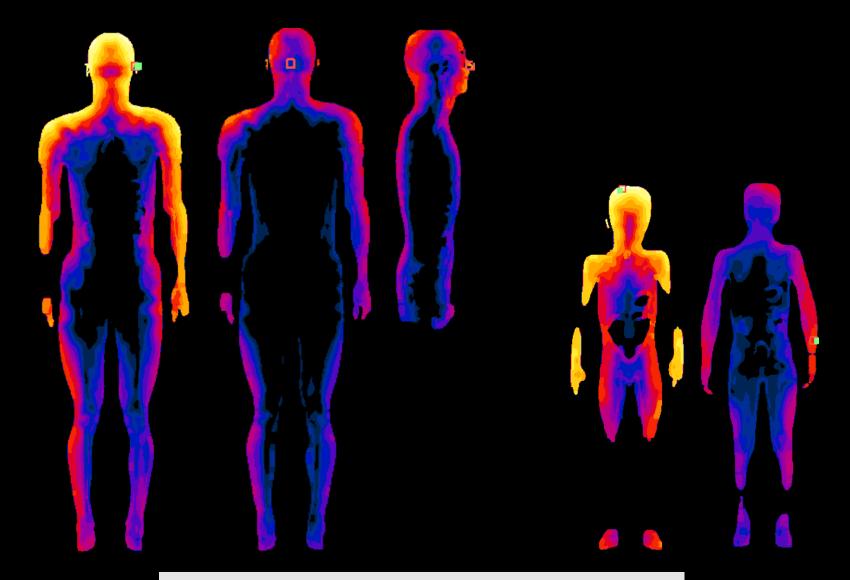
Thesisvoorstel

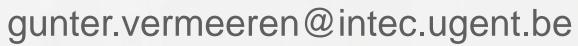

Studie van de absorptie veroorzaakt door de straling van poorten voor elektronische artikelbeveiliging

Promotoren Prof Luc Martens, Prof Wout Joseph Begeleider Günter Vermeeren

Referentie niveaus soms overschreden


Doelstelling: Voldaan aan basisrestricties?


3D electromagnetic solvers


Hybrid MoM/ FEM tool


Virtual Family models

EM absorptie in lichaam

http://www.waves.intec.ugent.be